.Holocene forearc block rotation in response to seamount
subduction, southeastern Peninsula de Nicoya, Costa Rica
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ABSTRACT

The southeastern tip of the Peninsula de Nicoya, Costa Rica,
on the Caribbean plate margin lies inboard of the rough bathy-
metric terrain on the subducting Cocos plate and along the land-
ward projection of the convergence vector for the Fisher seamount
group. The southern tip of the peninsula has nearly orthogonal
coastlines and extensive, well-preserved, Holocene marine terraces,
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and is ideally situated to evaluate the spatial distribution of forearc
deformation in response to seamount subduction.

Two marine terraces that yielded 35 radiocarbon dates give
information on the rates, style, and timing of deformation along
40 km of coastline. Ages range from 3.5 to 7.4 ka for a higher
terrace and from 0.3 to 2.9 ka for a lower terrace. A maximum
uplift rate is ~6.0 m/k.y. along the southeastern tip of the penin-
sula. Uplift rates decrease linearly to <1.0 m/k.y. along both or-
thogonal coastlines and thus landward from the Middle America
Trench and away from the line of subducting seamounts. The ~400
km? region along the tip of the peninsula can be approximated as
a rotating block with an angular rotation rate of 0.02%k.y. about
an axis with an azimuth of 80°. Given the modern elevation and
dip of the late Quaternary Cobano surface, this style of deforma-
tion is limited to a duration of 100-200 k.y. Deformation is occur-
ring in response to seamount bypass or underplating onto the Ca-
ribbean plate margin.

Keywords: Costa Rica, marine terrace, Quaternary, tectonism,
seamounts.

Figure 1. A: Major plate tectonic features of Central America. Names
of principle plates are in bold and underlined. SOAM—South Amer-
ica, CARIB—Caribbean, SPDB—South Panama deformed belt,
NPDB—North Panama deformed belt, CCRDB—Central Costa Rica
deformed belt, PPB—paleoplate boundary, RJ—ridge jump. Inset
shows location of B. Major tectonic features are compiled from
Mackay and Moore (1990), Silver et al. (1990), Meschede et al. (1998),
Barckhausen et al. (2000), and Marshall et al. (2000). Modern plate
motion relative to Caribbean is from DeMets et al. (1990) and Protti
et al. (1995). Small numbers give age of Cocos seafloor. B: Gener-
alized geologic map of Costa Rica, bathymetry of Cocos plate and
location of study area on Peninsula de Nicoya (inset). FSG, Fisher
seamount group; QP, Quepos Plateau; CR, Cocos Ridge. Geologic
units: Nicoya Complex, random dash pattern; active arc volcanic
rocks, random double-dash pattern; extinct-arc volcanic rocks, stip-
ple pattern; Cretaceous and Cenozoic fluvial to marine clastic and
volcaniclastic rocks, horizontal line pattern. Bathymetric data are
from von Huene and Fluh (1994). Magnetic anomolies are from
Barckhausen et al. (2000). Contour interval is 100 m, bold, and la-
beled every 1 km. Black dot with surrounding hachured area shows
epicenter and aftershock extent of March 25, 1990, Golfo de Nicoya
subduction earthquake (Mw = 7.0, depth = 20 km) and associated
focal mechanism (Protti et al., 1995).
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Figure 2. Generalized geology of
southeastern tip of Peninsula de
Nicoya. Geology is after Mora and
Baumgarter (1985), Mora (1985),
and Marshall and Anderson (1995).
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INTRODUCTION

The Pacific convergent margin of southern Central America pro-
vides a superb setting to test the notion that seamount subduction caus-
es forearc deformation. Convergence is nearly orthogonal and exceeds
90 m/k.y. offshore of the Peninsula de Nicoya. Southeastward from the
southern tip of the peninsula, the rough bathymetric domain of the
Cocos plate subducts northeastward beneath the Caribbean plate and
the Panama block at the Middle America Trench (Fig. 1A). Prominent
bathymetric features on the rough domain include the aseismic Cocos
Ridge, the Quepos Plateau, and the Fisher seamount group (Fig. 1B).

Subduction of these bathymetric features has a profound effect on
seismicity (Protti et al., 1995), trench-siope morphology (von Huene
and Fluh, 1994; von Huene and Scholl, 1991; Dominquez et al., 1998;
von Huene et al., 2000), and the style of both short-wavelength (Mar-
shall and Anderson, 1995; Fisher et al., 1998) and long-wavelength
(Gardner et al., 1992) forearc deformation. Tectonic erosion and sub-
sidence of the upper plate margin are considerable. The slope is scal-
loped and indented around seamounts, and there are large, scarp-
bounded depressions where seamounts have penetrated the margin
(Fig. 1B). However, 60-100 km inboard of the trench along the sub-
aerial part of the forearc, seamount subduction causes structural seg-
mentation and rapid, differential uplift of fault-bounded blocks (Fisher
et al., 1998; Marshall et al., 2000).

Analysis of subaerial forearc deformation in Costa Rica has been
limited to one-dimensional, coast-parallel (Fisher et al., 1994, 1998) or
coast-perpendicular (Marshall and Anderson, 1995; Gardner et al.,
1992) terraces. However, the southeastern tip of the Peninsula de Ni-
coya with well-preserved, Holocene marine terraces along two perpen-
dicular trending coastlines offers a superb opportunity to determine
two-dimensional attributes of deformation related to seamount subduc-
tion because it is located ~60 km inboard of the subducting Fisher
seamount group on the Cocos plate (Fig. 1B). In this paper we report
on the rates, style, and timing of Holocene deformation and further
define these results with elevation and dip of the late Quaternary Cob-
ano surface and Pliocene and Pleistocene Montezuma Formation.
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HOLOCENE MARINE TERRACES

Two laterally extensive, Holocene marine terraces are well devel-
oped along 40 km of nearly perpendicular coastlines at the tip of the
peninsula (Fig. 2). The terraces extend nearly 1 km inland and are
locally covered with as much as 2 m of fossiliferous, intertidal sands
and beach rock. Elevations of terrace inner edges descend systemati-
cally along both coastlines away from Cabo Blanco (0 km, Fig. 3A),
from a maximum elevation of ~16 m on the upper terrace (T1) and
~5 m on the lower terrace (T2). At a distance of ~20 km from Cabo
Blanco along both coastlines, terraces converge to approximately mod-
ern mean sea level (Fig. 3A). Locally, each terrace tread exhibits mul-
tiple, small (<1 m), laterally discontinuous steps that are not resolvable
with radiocarbon dating. They probably indicate short time step (<100
yr), nonlinear, coseismic uplift, which we approximate as a long-term
(thousands of years) linear uplift.

UPLIFT RATES AND BLOCK ROTATION

Marine shell samples (n = 35) distributed along the entire 40 km
coastline (Fig. 2) yield excellent age constraints for both terraces. Ages
range from 3.5 to 7.4 ka for terrace | and from 0.3 to 2.9 ka for terrace
2 (Table 1). The uplift rate for each dated sample is calculated using
the equation:

X1 (m) + X2 (m) + X3 (m)
X4 (ka)

Z (m/ky.) = , n

where Z is uplift rate, X1 is modern elevation, X2 is facies depth (positive
downward from 0 at modern mean sea level), X3 is paleo-sea-level depth
(positive downward from O at modern mean sea level), and X4 is cal-
endar calibrated years before 1999. For paleo-sea level we use the most
recently refined, composite sea level curve of Fleming et al. (1998).
Maximum uplift rates slightly in excess of 6.0 m/k.y. occur along
the southeastern tip of the peninsula at Cabo Blanco, decreasing ap-
proximately linearly to <1.0 m/k.y. along the 20 km length of both
coastlines (Fig. 3B). Uplift rates for the Holocene terraces approach
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TABLE 1. RADIOCARBON SAMPLES LISTED BY AGE WITH ASSOCIATED VALUES USED IN UPLIFT RATE CALCULATIONS

ID (Beta)’ Distance’ Age™* Modern Facies Sea Uplift
(km) (ka) elevationt? depth$s level*® rate™™*
(m) (m) (m) (m/k.y.)
Terrace 2
1 (121769) -03 0.333 (+0.030, —0.030) 2.6 -0.6 0.0 6.0 (3.6-8.9)
2 (121773) 71 0.378 (+0.050, —0.110) 24 -0.6 0.0 4.8 (2.6-9.3)
3 (032360)" 4.8 0.498 (+0.040, —0.050) 34 -1.2 0.0 4.4 (2.8-6.5)
4 (121791) -33 0.588 (+0.025, —0.050) 3.1 -0.6 0.0 4.3 (2.9-5.6)
5 (032361)" 6.3 0.758 (+0.100, —0.060) 3.7 -1.2 0.0 3.3 (2.1-4.6)
6 (121773) 7.0 0.808 (+0.070, —0.100) 46 -0.6 0.0 5.0 (3.8-5.2)
7 (121770) 0.8 0.853 (+0.060, —0.080) 5.2 -0.6 0.0 5.4 (4.3-6.9)
8 (131258) —-20.1 0.883 (+0.075, —0.075) 0.9 -1.2 0.0 -0.3 (—1.0-0.5)
9 (121780) —-2.4 0.943 (+0.090, —0.040) 3.5 -1.2 0.0 2.4 (1.5-3.3)
10 (121771) 1.7 1.068 (+0.070, —0.080) 7.2 -1.2 05 6.1 (5.1-7.4)
11 (121785) -16.9 1.103 (+0.070, —0.060) 2.0 -1.2 0.5 1.2 (0.5-1.9)
12 (094100) -5.6 1.218 (+0.070, —0.070) 4.1 0.0 0.5 3.8 (2.6-5.1)
13 (121788) —-6.7 1.428 (+0.070, —0.100) 2.8 -1.2 0.5 1.5 (1.0-2.0)
14 (121787) -14.4 1.468 (+0.060, —0.080) 1.8 -0.6 0.5 1.2 (0.7-1.7)
15 (034834)" 5.6 1.533 (+0.050, —0.080) 5.5 0.0 0.5 3.9 (3.0-5.1)
16 (121779) 18.5 1.62 (+0.100, —0.070) 23 -06 0.5 1.4 (0.9-1.8)
17 (121778) 133 1.63 (+0.090, —0.060) 17 0.0 0.5 1.3 (0.6-2.2)
18 (121780) 209 2.33 (+0.050, -0.150) 3.0 -0.6 1.0 1.5 (1.2-1.8)
19 (121784) -12.1 2.333 (+0.160, —0.040) 1.2 -0.6 1.0 0.7 (0.4-1.0)
20 (121781) 133 2.37 (+0.050, —0.040) 1.3 0.0 1.0 1.0 (0.5-1.5)
21 (032358)* 5.2 2.378 (+0.080, —0.040) 9.5 -0.6 1.0 4.2 (3.7-4.5)
22 (127435) -6.3 2.918 (+0.080, —0.020) 5.9 0.0 1.2 2.4 (2.0-2.9)
Terrace 1
23 (121774) -88 3.508 (+0.080, —0.100) 5.8 -0.6 1.5 1.9 (1.7-2.2)
24 (121775) -10.5 3.748 (+0.080, —0.080) 5.4 0.0 1.5 1.8 (1.5-2.2)
25 (122724)t 17.9 4.13 (+0.050, —0.050) 3.9 -1.2 2.0 1.1 (0.7-1.5)
26 (034835)" 5.0 4.338 (+0.090, —0.080) 13.7 0.0 20 3.6 (3.0-4.2)
27 (037558)" 11.0 4.563 (+0.100, —0.100) 6.0 -0.6 25 1.7 (1.3-2.2)
28 (032359)" 5.3 4.748 (+0.120, —0.170) 16.2 -1.2 25 3.7 (3.2-4.2)
29 (036397)" 49 5.083 (+0.190, —0.150) 171 -0.6 3.0 3.8 (3.4-4.3)
30 (036336)" 54 5.273 (+0.060, —0.190) 14.8 -0.6 3.5 3.4 (3.0-3.8)
31 (121776) -9.2 5.293 (+0.180, —0.150) 5.6 -1.2 35 1.5 (1.1-1.9)
32 (121783) -12.1 65.478 (+0.120, —0.060) 1.1 -1.2 45 0.8 (0.5-1.1)
33 (121782) 14.0 6.23 (+0.070, —0.080) 6.2 -1.2 6.0 1.8 (1.5-2.1)
34 (GX25370) -8.1 7.21 (+0.070, —0.030) 5.5 0.0 7.5 1.8 (1.5-2.1)
35 (117376) -94 7.438 (+0.040, —0.040) 5.8 -1.2 9.0 1.8 (1.6-2.1)

§ Sample ID as shown in Figure 2 with Beta Analytic number (121774); * indicates samples from Marshall and Anderson (1995); * indicates AMS date; GX, Geochron

Labs.
* Distance along coast from Figure 2.
** Calendar calibrated age and one sigma calibrated error.

t Modern elevation from transit surveys (0.01 m error), metric tape (0.01 m error), or altimeter (0.1 m error).
8§ Facies depth from reconstructed modern environments. Given a tidal range of 2.4 m, facies are assigned to mean sea level, 0.0 m (+1.2 m); swash zone -0.6 m

(0.6 m); or high tide line, -1.2 m (+0.6 m).

" Paleo-sea-level from Fleming et al. (1998). Assigned sea-level error is 1 m for samples >4 ka.
*** Uplift rate calculated from equation 1 with maximum and minimum values from accumulated errors listed here. Age calculated from 1999.

zero precisely where major physiographic changes occur along the
coast, i.e., at Bahia Ballena, the first large bay along the Golfo de
Nicoya coastline and near the mouth of the Rio Ario, the first major
river along the Pacific (Fig. 2). The largest offset in the linear trend of
uplift rate (Fig. 3A, between +7 km and + 10 km) has no observable
terrace offset along the coast. Neither the elevation data (Fig. 3A) nor
the uplift rate data (Fig. 3B) indicate late Holocene activity on the El
Flor normal fault (Fig. 2) near the tip of the peninsula (Marshall and
Anderson, 1995).

Decreasing uplift occurs along both a margin-perpendicular trend
landward from the Middle America Trench, and along a margin-parallel
trend away from the axis of the subducting Fisher seamount group (Figs.
1B and 3). Given the nearly orthogonal coastlines and the spatially dis-
tributed uplift rates, it is possible to calculate, as a simple three-point
problem, the angular rotation rate and rotation direction for this coastal
block. The roughly 400 km? region along the tip of the peninsula is
rotating as a block with an angular rotation rate of ~0.02°/k.y. (northwest
side down) about an axis with an azimuth of 80° (Fig. 3B inset).

Rotation of the Holocene terraces is consistent with the gentle,
northwest dip of the Cobano surface (2°-3°) and underlying Monte-
zuma Formation (3°-5°). The Cobano surface extends over much of
the southern tip of the peninsula, descending from more than 200 m
near its southern extent to ~100 m inland from the town of Cobano
(Fig. 2). Correlation with radiometrically dated mainland terraces de-
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fine the age of the Cobano surface to between about 46 and 350 k.y.
(Fisher et al., 1998; Marshall, 2600). The Cobano surface probably
formed during one or more of the sea-level highstands at oxygen iso-
tope stages 5, 7, or 9 (ca. 80-330 ka). Based on the time-averaged
rates of Holocene rotation and uplift, the modern geometry of the Cob-
ano surface can be used to determine the duration of deformation. At
Holocene deformation rates the Cobano surface would reach its present
attitude and elevation within 100-200 k.y.

DEFORMATION BY SEAMOUNT SUBDUCTION

A reasonable case can be made for seamount subduction as the
cause of deformation. The southeastern tip of the Peninsula de Nicoya
is ~60 km landward of the Middle America Trench along the trend of
the Fisher seamount group (Fig. 1B). Here, the Caribbean plate margin
is extensively scalloped (Fig. 1B) within 20 km of the coastline (Dom-
inquez et al., 1998; von Huene et al., 2000). Just oceanward of the tip
of the peninsula the Benioff zone occurs at ~12 km depth and the
plate boundary exhibits large megalenses that could represent sheared-
off seamounts (Ranero and von Huene, 2000). The March 25, 1990,
subduction earthquake (Mw = 7.0, depth = 20 km) was located just
offshore of Bahia Ballena (Fig. 1B). The arcuate distribution of after-
shocks suggests that the rupture was related to seamount subduction
(Protti et al., 1995) along the trend of the Fisher seamount group.

Subduction of the Fisher seamount group could reasonably pro-
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Figure 3. A: Elevation (X1 + X2, modern elevation plus facies depth
to account for facies depth variations among dated samples) vs.
distance for all dated samples and additional undated terrace inner
edges (paleo-high-tide line) illustrating distinct elevation trends for
two terraces along coast. X-axis (distance along coast) for A and B
illustrated in B inset is from Figure 2. B: Calculated uplift rate with
error bars for all dated samples. Linear best-fit regressions illustrate
significant decrease in uplift rates away from tip of peninsula at
Cabo Blanco. Thick gray line in inset indicates azimuth direction for
block rotation axis; tick is on downdip side.

duce the observed rotation of Holocene terraces along both the margin-
parallel and margin-perpendicular coastlines. If this rotation is limited
to the past ~200 k.y., as constrained by the geometry of the Cobano
surface and Montezuma Formation, then seamounts subducting at the
modern convergence rate of ~90 m/k.y. would migrate <20 km along
the convergence vector. This distance is similar to the trench-perpen-
dicular length of the deforming block. This length also approximates
the length of megalenses (10-15 km; Ranero and von Huene, 2000)
imaged at the plate boundary.

Thus, we conclude that the southeastern tip of the Peninsula de
Nicoya is uplifting and rotating in response to seamount subduction.
The seamount may be underplating onto the Caribbean plate or it may
still be subducting. Underplating would produce permanent and cu-
mulative vertical displacement as the line of seamounts subducts. If
the seamount remains attached to the Cocos plate, then subsidence may
occur after passage of the seamount, as observed along the margin
slope (von Huene et al., 2000; Dominquez et al., 1998; Ranero and
von Huene, 2000). There is no field evidence to indicate any Quater-
nary subsidence along the southern tip of the peninsula, suggesting
seamount underplating.
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CONCLUSIONS

Uplift and rotation of the southeastern tip of the Peninsula de
Nicoya are occurring in response to seamount subduction along the
projected trend of the Fisher seamount chain. The 35 radiocarbon dates
from 2 extensive and well-preserved Holocene marine terraces along
40 km of orthogonal coastline yielded ages ranging from 3.5 to 7.4 ka
for an upper terrace and from 0.3 to 2.9 ka for a lower terrace. Uplift
rates decrease linearly from a maximum of ~6.0 m/k.y. near the tip of
the peninsula at Cabo Blanco to <1.0 m/k.y. along both coastlines.
This distribution demonstrates decreasing uplift along both a margin-
perpendicular trend landward from the Middle America Trench and
along a margin-parallel trend away from the line of subducting sea-
mounts. The 400 km? tip of the peninsula is rotating as a discrete block
with an angular rotation rate of 0.02°/k.y. about an axis with an azimuth
of 80°. Calculated uplift rates are consistent with the elevation of the
late Quaternary Cobano surface, the duration of deformation con-
strained to the past 100-200 k.y. Deformation is occurring in response
to seamount bypass or underplating onto the Carribean plate.
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